Skip to main content
Shikha Sharma
Professor, Department of Geology and Geography

Peer Review Research Publications

* primary author is Sharma’s advisee/co-advisee

  1. Bowman, S., Agrawal, V., and Sharma, S., 2023, Role of pH and Eh in geothermal systems: Thermodynamic examples and impacts on scaling and corrosion, Geothermics, v. 111, 102710
  2. Bowman, S., Pathak, A., Agrawal, V., and Sharma, S., 2023, A simple method for obtaining heat capacity coefficients of minerals. American Mineralogist https://doi.org/10.2138/am-2023-9109.
  3. Bowman, S., Agrawal, V., and Sharma, S., 2023, Evaluating the impact of redox potential on corrosion of Q125, 316L, and C276 steel in low-temperature geothermal systems Corrosion and Materials Degradation, 4, 573–593. https://doi.org/10.3390/cmd4040030
  4. * Bowman, S., Pathak, A., Agrawal, V., and Sharma, S., 2023, Effect of ionic strength on H2O and Si-species stability field geometry in pH-Eh space. Aquatic Geochemistry, v. 29:207–218 

  5. Burrows,  L., Goldberg R., Xiong W.,  Sanguinito S., Shumski, A.,  Agrawal V., Sharma, S.,  Kutchko, B., & Hakala, J. A. 2023. The Role of Iron in Oxidant-Initiated Halogenation Reactions of Hydraulic Fracturing Additives. ACS Earth and Space Chemistry.7, 10, 1858–1867
  6. Donmoyer, S., Agrawal, V., Sharma, S., & Hakala, J. A. 2022Effect of oxidative breakers on organic matter degradation, contaminant mobility and critical mineral release during shale-fracturing fluid interactions in the Marcellus Shale. Fuel, https://doi.org/10.1016/j.fuel.2022.125678
  7. * Yesenchak, R., Sharma, S., & Maxwell, A. E. 2022. Modes of Occurrence, Elemental Relationships, and Economic Viability of Rare Earth Elements in West Virginia Coals: A Statistical Approach. Minerals, 12(8), 1060.
  8. * Bhattacharya, S., Agrawal, V., & Sharma, S. 2022. Association of Rare Earths in Different Phases of Marcellus and Haynesville Shale: Implications on Release and Recovery Strategies. Minerals, 12(9), 1120.
  9. Sharma S, Agrawal V, Hakala A, Mcgrath S, Hakala A, Lopano C, Goodman A. 2021 Geochemical controls on CO2 interactions with deep subsurface shales: Implications for geologic carbon sequestration. Env. Sci. Processes and Impacts https://doi.org/10.1039/D1EM00109D
  10. *Agrawal V and Sharma S 2021 Critical Minerals: Current Challenges and future strategies . Int. J. of Env.  Sci. and Natural Res. DOI:10.19080/IJESNR.2021.27.556215JESNR.2021
  11. Sharma S., Agrawal V., Akondi R. Wang Y, Hakala A. 2021 Understanding controls on the geochemistry of hydrocarbon produced waters from different basins across the US. Env. Sci. Processes and Impacts https://doi.org/10.1039/D0EM00388C
  12. Welch S. et. al., 2021 Comparative Geochemistry of Flowback Chemistry from the Utica/Point Pleasant and Marcellus formations- Implications for the Source of Salts. Chemical Geology https://doi.org/10.1016/j.chemgeo.2020.120041
  13. Williams T, Bhattacharya S, Song L,  Agrawal V, Sharma S  2021 Petrophysical Analysis and Mudstone Lithofacies Classification of the HRZ Shale on the North Slope. Journal of Pet.Science and Engineering https://doi.org/10.1016/j.petrol.2021.109454
  14. Sharma S., Agrawal V., Akondi R. 2020. Role of Biogeochemistry in efficient shale oil and gas production. Fuel  259 https://doi.org/10.1016/j.fuel.2019.116207
  15. Phan T., Hakala A., Sharma S. 2020. Application of geochemical signals in unconventional oil and gas reservoir produced waters towards characterizing in situ geochemical fluid-shale reactions. Science of Total Environment  Science of Total Environment  714-136867
  16. * Agrawal V. and Sharma S., 2020. Are we modeling the properties of unconventional shales  correctly? Fuel 267: 117316.
  17. Pilewski J., Sharma S., Agrawal V., Hakala A., Stuckman MY. 2019. Effect of Maturity and Mineralogy on Fluid-Rock Reactions in the Marcellus Shale. Env. Sci. Processes and Impacts  DOI: 10.1039/C8EM00452H
  18. Akondi R, Sharma S, Trexler R, Mouser PJ, Pfiffner SM 2019. Microbial Lipid Biomarkers Detected in Deep Subsurface Black Shales. Env. Sci. Processes and Impacts  DOI: 10.1039/c8em00444g
  19. Phan T., Hakala A., Lopano C. and Sharma S. 2019. Rare earth elements and radiogenic Sr isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian Basin. Chemical Geology 509: 194-212
  20. Agrawal V. and Sharma S. 2018. Improved Kerogen models for determining hydrocarbon potential and thermal maturity of shales. Nature Scientific Reports 8: 17465
  21. Agrawal V. and Sharma S., 2018. Molecular Characterization of Kerogen from Mature Marcellus Shale and its Implications for Determining Hydrocarbon Potential and Thermal Maturity. Fuel 228: 429–437.
  22. Agrawal V. and Sharma S., 2018. Testing utility of organogeochemical proxies to assess sources of organic matter, paleoredox conditions and thermal maturity in mature Marcellus Shale. Frontiers in Energy Research 6:42 https://doi.org/10.3389/fenrg.2018.00042
  23. Borton M. A., et. al., 2018. Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proceedings of the National Academy of Sciences, 201800155
  24. Borton, M. A., et. al., 2018. Comparative genomics and physiology of the genus Methanohalophilus, a prevalent methanogen in hydraulically fractured shale. Environmental Microbiology, 20 (12)-4596-4511 https://doi.org/10.1111/1462-2920.14467
  25. Moore J., Xiong W., Lopano C., Phan T., Vankeuren A., Sharma S., and Hakala A. 2018. Bench-Top Experiments Evaluating Simulated Hydraulic Fracturing Fluid Interactions with Marcellus Shale Core. Proceedings URTeC 2018; 852-862
  26. Chen R & Sharma S. 2017. Linking the Acadian orogeny with organic-rich black shale deposition: evidence from the Marcellus ShaleMarine and Petroleum Geology: 79, 149-15
  27. Akondi R, Trexler R, Pfiffner SM, Mouser PJ, Sharma S. 2017. Modified Lipid Extraction Method for Deep Subsurface Shale. Frontiers in Microbiology 8,1408 https://doi.org/10.3389/fmicb.2017.01408
  28. Sharma S., Carr, T. R., Mouser, P. J., Wrighton, K., Cole, D., Wilkins, M., … & Hakala, A. 2017. Biogeochemical Characterization of Core, Fluids, and Gas at MSEEL Site. Proceedings URTeC 2017; 847-854.
  29. Carr T., Wilson T. H., Kavousi P., Amini S., Sharma S. et. al. 2017. Insights from the Marcellus Shale Energy and Environment Laboratory (MSEEL). Proceedings URTeC 2017,1130-1142 DOI 10.15530/urtec-2017-2670437
  30. Hakala J. A., Crandall D., Moore J., Phan T., Sharma S., & Lopano, C. 2017. Laboratory-Scale Studies on Chemical Reactions Between Fracturing Fluid and Shale Core From the Marcellus Shale Energy and Environmental Laboratory (MSEEL) Site, Proceedings URTeC 2017, 1458-1467. DOI 10.15530/urtec-2017-2670856
  31. * Song L., Paronish T., Agrawal V., Hupp B., Sharma S., Carr T. R. 2017. Depositional Environment and Impact on Pore Structure and Gas Storage Potential of Middle Devonian Organic Rich Shale, Northeastern West Virginia, Appalachian Basin. Unconventional Proceedings URTeC 2017, 301-311. DOI: 10.15530/urtec-2017-2667397
  32. Booker A, Borton M, Daly R, Welch S, Nicora C, Hoyt D; Wilson T, Purvine S, Wolfe R, Sharma S; Mouser P, Cole D, Lipton M, Wrighton K, Wilkins M. 2017. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shale. Mspehre : 4 e00257-17 https://doi.org/10.1128/mSphereDirect.00257-17
  33. Chen R. & Sharma S. 2016. Role of alternating redox conditions in formation of organic-rich intervals in the Middle Devonian Marcellus Shale, Appalachian Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 85–97
  34. Huntsman BM, Petty JT, Sharma S. & Merriam ER 2016. More than a corridor: use of a main stem stream as supplemental foraging habitat by a brook trout metapopulation. Oecologia:1-11
  35. Meier B & Sharma S. 2015. Using stable carbon isotopes to track potential leakage of carbon dioxide: Example from an enhanced coal bed methane recovery site in West Virginia, USA. International Journal of Greenhouse Gas Control, 41: 107-115.
  36. Chen R, Sharma S., Bank T, Eastman H, Soeder D. 2015. Comparison of geochemical characteristics of sediments from an oil and gas prone well in the Marcellus Shale. Applied Geochemistry, DOI: 10.1016/j.apgeochem.2015.01.001
  37. Phan TT, Capo RC, Stewart BW, Graney JR, Johnson JD, Sharma S., Toro J. 2015. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus shale gas extraction: uranium, arsenic, barium. Applied Geochemistry, DOI:10.1016/j.apgeochem.2015.01.013
  38. Sharma S., Bowman L., Schroeder K., Hammack R., 2014. Assessing changes in gas migration pathways at a hydraulic fracturing site: Example from Greene County, Pennsylvania. Applied Geochemistry, DOI: 10.1016/j.apgeochem.2014.07.018
  39. Pelak A and Sharma S. 2014 Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale development. Environmental Pollution, 195: 1-10.
  40. Wilkins MJ, Daly R, Mouser PJ, Texler R, Wrighton KC, Sharma S., et. al., 2014. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere. Frontiers in Microbiology, DOI: 10.3389/fmicb.2014.00481
  41. Soeder DJ, Sharma S., et. al., 2014. An approach for assessing engineering risk from shale gas wells in the United States. International Journal of Coal Geology, 126:4-19.
  42. Sharma S., Mulder M, Sack A, Schroeder K and Hammack, R 2014. Isotope approach to assess hydrologic connections during Marcellus Shale drilling. Groundwater 52:424-433.
  43. Sack A, and Sharma S., 2013. A multi-isotope approach for understanding sources of water, carbon and sulfur in natural springs of the Central Appalachian region Environmental Earth Sciences, DOI: 10.1007/s12665-013-2862-5.
  44. Sharma S., Sack A, Adams JP, Vesper DJ, Capo R, Hartstock A and Edenborn HM 2013. Isotopic Evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania USA. Applied Geochemistry, 29:32-42.
  45. Sharma S. and Baggett JK 2011. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments in the Powder River Basin, Wyoming. Applied Geochemistry, 26: 1423-1432.
  46. McLaughlin JF Frost, CD and Sharma S. 2011. Isotopic analysis of aquifer systems, Atlantic rim, Carbon County, Wyoming: a new tool for characterizing coalbed natural gas systems. AAPG Bulletin, 95: 191-217.
  47. Smith MS, Sharma S., Frost C D and Wyckoff TB 2010. Baseline geochemical characterization of potential receiving reservoirs for carbon dioxide in the greater Green River Basin, Wyoming. Rocky Mountain Geology 45:95-113.
  48. Frost C D, Brinck EL, Mailloux J, Sharma S., et al., 2010. Innovative approaches for tracing water co-produced with coalbed natural gas: applications of strontium and carbon isotopes of produced water in the Powder River Basin, Wyoming and Montana (Invited). In: Coalbed Natural Gas: Energy and Environment, Nova Science Publishers, New York ~ pp200.
  49. Sharma S. and Williams D. 2009. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park. Biogeosciences, 6: 23-31.
  50. Sharma S. and Frost C 2008. Tracing coal bed natural gas co-produced water using stable isotopes of carbon . Groundwater, 46:329-334.
  51. Sharma S., Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C and Chauhan MS 2006. Correlative Evidences of Monsoon Variability, Vegetation Change and Human Inhabitation in Sanai lake deposit: Ganga Plain, India. Current Science, 90: 973-978.
  52. Sharma S., Mora G, Johnston JW and Thompson TA 2005. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the late Holocene. Quaternary Science Reviews, 24: 1941-1951.
  53. Sharma S., Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C, Chauhan MS and Morgenroth G 2004. Lateglacial and Holocene environmental changes in Ganga Plain, Northern India. Quaternary Science Reviews 23:145-159.
  54. Sharma S., Joachimski M, Tobschall HJ, Singh IB, Tewari DP and Tewari R 2004. Oxygen Isotopes of Bovid Teeth: Archives of Palaeoclimatic Variations in Archaeological Deposits of Ganga Plain, India. Quaternary Research, 62: 19-28.
  55. Tewari R, Pant PC, Singh IB, Sharma S., Sharma M, Srivastava P, Singhvi AK, Mishra PK and Tobschall HJ 2003. Middle Palaeolithic human activity and palaeoclimate at Kalpi in Yamuna Valley, Ganga Plain. Man and Environment, XXVI: 1-13.
  56. Chauhan M.S., Sharma C., Singh I.B. and Sharma S. 2003. Proxy Records, Central Ganga Plain. J. Palaeontol. Soc. India, 49, 27-34.
  57. Srivastava P, Sharma S., Singh IB and Singhvi AK 2002. Late Pleistocene-Holocene hydrologic changes in the interfluve areas of Central Ganga Plain India. Geomorphology 1327: 1-14.
  58. Sharma M, Sharma S., Shukla UK and Singh IB 2002. Sandstone body architecture and stratigraphic trends in the Middle Siwalik Succession of Jammu area, India. Journal of Asian Earth Science, 20: 817-828.
  59. Agarwal KK, Singh IB, Sharma M, Sharma S. and Rajagopalan G 2002. Extensional tectonic activity in the cratonward parts (peripheral bulge) of the Ganga Plain foreland basin, India. International Journal of Earth Science (Geologische Rundschau) 91:897-905.
  60. Singh IB, Sharma M, Sharma S., Singh P, Tobschall HJ and Tewari R 2002, Geochemical characteristics of the soil samples of Dadupur excavation, Banthara, Lucknow. Pragdhara, 12: 117-126.
  61. Sharma S., Sharma M and Singh IB 2001. Facies characteristics and cyclicity of Lower Siwalik sediments, Jammu area: a new perspective. Geological Magazine, 138: 455-470.
  62. Sharma C, Chauhan MS, Sharma S., Sharma M and Singh IB 2001. Proxy records of Holocene vegetation and climate change from Sanai tal, Central Ganga Plain, Uttar Pradesh. Geological Society of India Special Publication, 65(III):199-202.
  63. Shukla UK, Singh IB, Sharma M and Sharma S. 2001. A model of alluvial megafan sedimentation: Ganga Megafan. Sedimentary Geology 144: 243-262.
  64. Srivastava P, Shukla UK, Sharma M, Sharma S, Mishra P, Singh IB, and Singhvi, A.K. 2000 Luminescence chronology and Facies development of Bhur sands in the interfluve region of Central Ganga Plain, India. Current Science, 78: 498-503.
  65. Singh IB, Srivastava P, Sharma S., Sharma M, Singh DS, Rajgopalan G and Shukla UK 1999. Upland Interfluve Deposition: Alternative Model to Muddy Overbank Deposits. Facies, 40: 197-210.
  66. Sharma M, Sharma S, Khan ZA, Singh IB, and Srivastava P 1999. Partial Independence and Entropy analysis of Middle Siwalik succession, Jammu area India. Geoinformatics, 10: 169-185.
  67. Singh IB, Sharma S, Sharma M, Srivastava P and Rajagopalan G 1999. Evidence of human occupation and humid climate of 30 Ka in the alluvium of southern Ganga Plain. Current Science, 76: 1022-1026.
  68. Singh IB, Rajagopalan G, Agarwal KK, Srivastava P, Sharma M and Sharma S. 1997. Evidence of Middle to Late Holocene Neotectonic Activity in Ganga Plain. Current Science, 73: 1114-1117.